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AN ANALYTICAL INVESTIGATION OF FLOW
PROPERTIES OF RAREFIED GASES

By S. J. Robertson
Heat Technology Laboratory, Inc.

Huntsville, Alabama

SUMMARY

An investigation was made to develop a new analytical

procedure for obtaining flow rates through tubes in the transi-

tion regime. Two approaches were investigated, one using a

collision model superimposed on a previously obtained free

molecular solution, and the other using a collision model

based on a zrey media radiation analogy in which the molecules

are assumed to be scattered isotropically while passing throuzh

a media of previously wall scattered molecules. Effort on

the former approach has been suspended due to the lack of a

sound theoretical basis. The latter approach is currently

being programmed for a computer solution.

17$TRCDUCTION

The flow rate of gases down a tube in a free molecular

gas stream has been investigated and reported in Refs. 1-3.

These investigations were directed toward the interpretation

of impact pressure probe measurements at high altitudes.
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Recent investigations (Refs. 4-7) have extended these results

into the transition regime where intermolecular collisions

must be considered. The investigators of Refs. 4 and 5

utilized a Monte Carlo technique which assumed a constant

mean-free-path throughout the tube. The investigators of

Ref. 6 obtained experimental measurements which were compared

with theoretical predictions based on a first collision

modification of free molecular flow theory. The investigators

of Ref. 7 obtained an approximate solution to the Boltzmann

equation. The purpose of the present investigation was to

develop a new analytical procedure for obtaining flow rates

through tubes in the transition regime. Two approaches

were investigated, one using a collision model superimposed

on a previously obtained free molecular solution, and the

other using a collision model based on a grey media radiation

analogy in which the molecules are assumed to be scattered

isotropica!!y while passin_ through a media of previously

wall scattered molecules.

NOMENCLATURE

d

D

f

I

k

Kn

distance from a volume element

tube diameter

velocity distribution function

intensity

Boltzmann constant

Knudsen number (Eq. 8)
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L

m

M

n

N

q

Q

r

R

S

T

U

U

V_.,

V

X

Y

Z

w

A

×

tube length

intermolecular collision index, also, molecular mass

terminal value for intermolecular collisions

tube wall collision index, also, number collisions

as defined by Eq. (I0).

terminal value for tube wall collisions, also,

n_mber collisions as defined by Eq. (15)

molecular flux

number scattered molecules as defined by Eq. (36).

radial position coordinate

tube radius

speed ratic (Eq. 3)

temperature

external stream velocity

molecular velccity

most probable velocity in free stream

volume

axial position coordinate

rectangular coordinate perpend "_'_1_u_arto x

rectangular coordinate perpendicular to x and y

thermal accommodation coefficient

angle

spherical coordinate (angular displacement between
velocity vector and tube axis), also, as defined

by Eq. (26).

solid angle, also persistence of velocity (Eq. II)

molecular beam attenuating factor

dimensionless molecular speed (Eq. 3)

defined by Eq. (34)
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molecular diameter

ratio of specific heats of gas

number density

Subscripts:

E

g

I

m

n

s

w

exit plane

refers to molecules scattered from a volume element

refers to molecules entering first volume element

(Eq. 5)

intermolecular collision index

tube wall collision index

tube wall

refers to tube wall scattered molecules.

APP_CACH i.

Developed by P. F. Goolsby

General Description

This approach is essentially a collision model super-

imposed on a free molecular solution previously obtained

and reported in Ref. 8. All scattering effects of the wall

are assumed to be built into the free molecular solution,

and the effects of intermolecular collisions simply change

the respective magnitudes. The volume within and immediately

in front of the tube is divided into a number of finite

volume elements, the dimensions of each volume element being

chosen sufficiently small that multiple collisions within

the element may be neglected. A typical arrangement of
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elements is as follows:

External

Flow

Volume Elements

II 1 ,, 2 I 3 I41 I 6 7 8

u_i___i_

Tube
Tube Exit

Entrance

The initial density in each volume element is assumed to be

the free molecular density obtained from Ref. 8. The mole-

cules within each volume element are assumed to be a

Maxweilian _as at rest. A number of molecules from the

external stream with speeds in a certain small range are

then allowed to enter the first volume element and undergo

collisions within the volume element. The number of mole-

cules from the external stream with speeds in the small range

of speeds which enter the volume element is determined from

the distribution of velocities in the external stream. The

number of these molecules which undergo collision in the

volume element is determined from the collision frequency

equation. The velocities of both the incoming molecules and

the target molecules after collision are determined from

the velocity persistence equation and the conservation of

momentum.

Some of the incoming molecules which undergo collision

are assumed to remain in the volume element after collision

-5-



and become part of the density within the volume element.

The criteria for determining whether the incoming molecules

remain in the volume element after collision is based on the

following assumption. If the speed of the molecules after

collision, as determined from the persistence of the velocity

equation, is equal to or less than the most probable velocity

in the volume element, the molecules would be scattered

isotropically and would appear, if observed, to be a part of

the target molecules in the volume element. On the other hand,

if the speed of the molecules after collision is greate_ than

the most probable velocity in the volume element, then the

molecules would not be scattered isotropically but would

continue directed into the next volume element. A similar

determination is made concerning the target molecules after

collision. The velocity of the target molecules after col-

lision is determined from the velocity of the incoming mole-

cules before and after collision and the conservation of

momentum. The target molecules are assumed to have zero

velocity, on the average, prior to collision. As with the

incoming molecules, the target molecules involved in collisions

are assumed to remain in, or be removed from, the volume ele-

ment according to whether the speed after collision is less

than or greater than the most probable velocity in the volume

element. Those target molecules removed from the volume

element pass on into the next element alonK with those incoming

molecules involved in collisions which did not remain in the

volume element, and those incoming molecules which did not



undergo collisions in the volume element.

The above described process is repeated for all speeds

of the incoming molecules. This will result in a new density

within the volume element and a new distribution of incoming

molecules into the next volume element where the process is

repeated. The process is repeated over all the volume elements

in turn until the density in each volume element ceases to

change significantly. It is then assumed that the collision

processes have reached steady-state.

The transmission probability for flow through the tube

is obtained by ratioing the number of molecules passing over

the exit plane of the tube to the number of molecules entering

the first volume element. The number of molecules crossing

the exit plane is obtained by integrating over all speeds the

distribution of me!ecules passing out of the last volume

element at steady-state. Likewise, the number entering the

first volume element is obtained by integrating over all speeds

the distribution of the inconinK molecules. It was found

that this ratio approaches unity for large Knudsen numbers.

It was therefore assumed that this ratio represents the

transmission probability normalized to the free molecular

transmission probability.

Required Equations

Distribution of Inconin_ Molecula r Speed___s. - It was

necessary to find the distribution of the incominz molecules
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from the external stream with respect to their absolute speed.

This was necessary because the collision frequency of the

incoming molecules when colliding with a Maxwellian gas at

rest is a function of the absolute speed of the incoming

molecules. The distribution function with respect to speed

was obtained by integrating the Maxwellian distribution of

the molecules in the free stream. The distribution of ve-

locities in the free stream is assumed to be Maxwellian

superimposed on the stream velocity. The Maxwellian distri-

bution function may then be represented by (Ref. 9)

1

fx,v,z 9/2
- _ %7-

m

exp ( - [(v x - U)2 + + {1)

where vm = (2kT®Im) I/2

in the external stream;

is the most probable thermal velocity

k is the Boltzmann constant; m is

the mass of a molecule; T is the static temperature and

" is the velocity of the external stream; and Vx, Vy, and

vz are the velocity components in the x, y, and z direc-

lions, respectively. The x-y plane is parallel to the tube

entrance plane and the z axis is parallel to the tube axis

and is directed positively from the entrance to the exit.

The fraction of molecules df in an element of volume

with velocity components between vx

, + dv isVy + dry and v z and v z z

and vx + dVx, v and
Y

df : fx,y,z dVx dVv dVz (2)
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The volume element of velocity space dvxdvydv z may be

written in Terms of spherical coordinates as 2_v2sin# d# dv

where v 2 = v 2 + v2 + v2 and # is the angle between the
x y z

velocity vector and the positive z axis. Eq. (2) may then

be written as:

2

df = --A 2 exp{-[ ^2 - 2SA cos# + $2]} sin# d¢ dA
/T

(3)

where A : v/v m and S : U/v m •

The distribution function f^

defined by df = fA dA. The value of

with respect to A

fA is obtained by

is

integrating Eq. (3) between proper limits of #. In this

study, we are interested only in those molecules which enter

The first volume element from one side (traveling in the

positive z direction). Therefore, we integrate # from

0 To _12:

_f2

>/fA = ^2

O

exp{ _[^2 - 2SAcos¢ ÷ $2]} sin# d#

exp[_(S2 + A2)][exp(2SA) - i]

(4)

Another quantity used in The mathematical treatment

involved in this investigation is The Total number DI/D"

of these molecules (all molecules which are traveling in

the positive axial direction) per unit volume as a ratio

to the total number per unit volume in the free stream.
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This is obtained by integrating f^ with respect to

over the range of A from zero to infinity:

A

:i= l

P_
O

exp[_(S 2 + ^2)][exp(2SA) - l]d^

1

: --(i + erfS)

2

C5)

Collision Frequency. - To obtain the number of the

incoming molecules having collisions in the volume element,

the collision frequency equation of Ref. I0 was used:

O

V : DO _
e-X 2 + --

m 2

where x = v (m/2kT) ]/2,

2x2+i)}erf x

X

(6)

v is the speed of the incoming

molecules, c is the number density of molecules in the

volume element, o is the diameter of the molecules (assuming

hard spheres), and T is the temperature of the molecules

in the volume element (assuming a Maxwellian gas at rest).

From Ref. 9, the mean-free-path _ in the static

free stream may be related to the molecular diameter

and the number density p in the free stream by:

A ----

1
(7)

Defining the Knudsen number Kn by:

Kn = AID (8)
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where D is the tube diameter, and making the proper sub-

stitutions in Eq. (6) results in:

(L/D)

v - (p/P) e -x2 +- erf
2 x

(9)

where x = A/(T/T=) I/2 and L is the tube length.

Since we ire concerned with the total number of col-

lisions encountered by the incoming molecules during a traverse

of the volume element, the collision frequency v of Eq. (9)

should be multiplied by the length of time required for the

traverse. The assumption will be made That the absolute speed

v is nearly equal To The axial component of the velocity, and

the time of traverse is Ax/v, where A_ is the axial length

of the volume element. The accuracy of this assumption should

increase at the higher speed ratios S. The total number of

collisicn_ n encountered by each of the incoming molecules

of absolute speed ratio A during a Total traverse of the

volume element is therefore:

n : ¢'-2-_(L/D)(Ax/L)(P/P=)(e-x2Knx ' +--/[ (2x2"+ I) x12 x erf (i0)

Persistence of Velocity. - In order to obtain the

change in The velocity of the incoming molecules after a
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collision, the following equation from Ref. I0 was used:

Ill -- -- q 1

2

e_X /[1 2

2x 2 [ /V
e-X 2 +

2

erf

erf

m

X

}(ii)

where m is the ratio of the velocity component after col-

lision to the velocity before collision, with the component

being in the direction of motion prior to the collision.

Here again, we make the assumption that we are obtaining

axial components of velocity after collision. This is based

on the premise that this would be true "on the average" for

a large number of separate collisions. This is somewhat

inconsistent with the earlier use of absolute speeds in

obtaining the number of collisions. As previously mentioned,

hcwever, the accuracy of this assumption should increase at

the higher speed ratios.

The dimensionless speed ^' after collisions is then:

A ' : wA (12)

where A is the speed prior to collision.

In obtaining the velocity of the target molecules after

collision, the conservation of momentum was applied with the

assumption that the target molecule was at rest prior to the

collision. This is not actually true; however, since the

target molecules are assumed tc be a Haxwellian gas at rest,
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the molecular motion is isotropic. The assumption that the

target molecules are at rest, then, is based on the premise

that this would be true "on the average" for a large number

of collisions. Once again, we make the assumption that we

are dealing with axial components.

The dimensionless speed A'' of the target molecule

after collision is then:

(13)

Computation Procedure

The required inputs for the computation procedure

are the tube dimensions L/R, the dimensions of the volume

elements Ax/L, the speed ratio, S, the initial density

c/0 and temperature T/T distribution of target molecules,

and the Knudsen nur_ber Kn.

Collision Process. - A small range of speeds from

A to A + AA of the incominE molecules from the external

stre&m is chosen, and the number of molecules per unit volume

Ao ratioed to the free stream density in this speed range is

determined from:

The number _ of these molecules colliding in the first
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volume element is then found by multiplying Eqs. (I0) and

(i_):

N = n aplp (15)

The velocity of these colliding molecules after collision

is obtained from Eq. (12).

The same number of target molecules will be involved

in the collisions and the velocity of these molecules after

collision is obtained from Eq. (13).

The speeds of the incoming molecules and the target

molecules after collision are then compared with the most

probable velocity of the molecules in the volume element.

This amounts to the same thin_ as comparing the dimensionless

speeds A' and A'' (Eq. (12) and (13)) with (T/T®)*� 2 .

If ^' is less than (TIT)]12 then these molecules are

added to the density in the volume element. The new density

0'/p® in the volume element is

0'l_® = 0/0® + N (16)

Since these molecules are gained by the volume element,

they are lost by the incomin K stream. The new distribution

function fl at A of the molecules passin_ into the next

volume element is obtained from the balance:

' AA = f^ AA - NfA
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ON

N

f' = fA ---
A AA (17)

If A' is greater than (T/T)l/2 , no change occurs.

If A'' is greater than (T/T) I/2, these target

molecules are lost from the volume element and added to the

stream of molecules passing into the next volume element.

The density o'/p® in the volume element after collision

is then:

0'/0® : 0/0= - N (18)

and the distribution function

the next volume element is

r

fA of molecules passing into

N

f' = fA +-- (ig)
A 6A

If A'' is less than (T/T) I/2, no change occurs.

This process is repeated for all AA's over the dis-

tribution function fA for the first volume element to

establish a new density p/p

and a new distribution function

into the next volume element.

in the first volume element

fA for molecules passing

The above process is then repeated for each volume

element in turn down the tube. This establishes a new

distribution of densities in the volume elements.
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Using the new distribution of densities as initial

conditions, the entire process is repeated until the density

distribution no longer changes appreciably, and the collision

process is assumed to have reached steady-state.

Transmission Probability. - After the collision process

has reached steady-state, the normalized transmission pro-

bability K' (normalized to the free molecular transmission

probability) is calculated. This is accomplished by first

finding the ratio pE/p_ of the total number of molecules

per unit volume passing out of the last volume element to the

free stream density. This value is obtained by integrating

the distribution function fA ever all speeds A for molecules

passin_ out of the last volume element:

P_
O

dA (20)

We then ratio this number to the density of molecules entering

the first volume element pl/p (Eq. 5) to obtain the

normalized transmission probability K':

PEIP.
K' - (21)

The actual transmission probability K is found by

multiplying K' by the free molecular transmission probability

K which may be found from Refs. 3 or 8.

K : K' K (22)
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APPROACH 2

Developed by S. J. Robertson

General Description

The approach taken here is an extension of the earlier

treatment of free molecular flow as reported in Ref. 8. This

treatment used form factor relationships analogous to thermal

radiation transfer. In extending these studies into The

transition regime, it was assumed that the molecules which

had been previously scattered from the tube wall acted as

a scattering media for other molecules passing Through.

The following simplifying assumptions were made: (I) the

molecules may be considered as hard spheres, (2) the molecules

constituting the scattering media are taken to be stationary

when compared to the velocity of the incoming molecules, (3)

the molecules are scattered isotropically by the stationary

spheres without energy exchange and with a Maxwellian velocity

distribution, and (4) as in Ref. 8, the molecules are scattered

diffusely from the tube wall with an energy exchange determined

by the thermal accommodation coefficient.

In order to account for intermolecular collisions in

the flow of molecules through the tube, the distribution

of those molecules scattered from the tube wall must be known

as an initial condition. The exact distribution can be deter-

mined, however, only when the intermolecular collisions are

considered. It is necessary, therefore, to start with a first
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approximation to the distribution of wall scattered molecules

and use this distribution as the initial conditions for deter-

mining a second approximation. This process is repeated until

the successive distributions no longer change appreciably, and

convergence is achieved. The first approximation is taken

to be the free molecular solution obtained by the method of

Ref. 8.

The transmission probability is obtained in the same

manner as in Ref. 8 after convergence is achieved.

Required Equations

Attenuated Beams. - The equations reqt_ired for the

deter_inatior, of wall and exit plane fluxes, total flow rates

(transmission probabilities), and density distributions due

to molecules arriving at a point directly from the free

_t_'eaT, or after a wall collision without undergoing inter-

molecular collisions in transit are nearly the same as those

of Ref. 8 for the free molecular case. The only difference

is that the equations of Ref. 8 are multiplied by an exponen-

tial factor _ to account for the attenuation of the beam

due to scatterinz along the beam path. This attenuating

factor is based on the assumption that all molecules in the

beam that undergo collisions are scattered and removed from

the bean. The collision cross section S for hard sphere

molecules for a beam of molecules passing through a media

of stationary 1,olecules is (Ref. 9):

S = n o 2 (23)

-18-



where c is the molecular diameter.

If the beam intensity is I, the decrease in beam

intensitv when passin_ through an elementary distance d£

in the scatterin_ media is:

dl = - _w _2 Id£ (2h)

where p is the density of tube wall scattered molecules
W

at that point. The fractional decrease in intensity _ over

a distance £ is therefore:

: exp [I- no d£ (25)
L.

O

This attenuation is due entirely to scattering from the beam

and not to other effects, such as diver_]ence of the beam.

The attenuatin,2 factor _ may be exDressed in terms of the

Knudsen number Kn throu<h use of Eqs. (7-8):

- eXD

where

and x

- (0w/0 )(dx'/L)
/Y Kn cos¢ ®

O

(2C)

is the angle between the beam path and the tube axis

is the projection of the beam path on the tube axis.

From Ref. 8 and Eq. (26), the density Po,o at a

point due to molecules streaminz directly from the external

stream without a prior collision is obtained by inteqrating



the following equation over the solid angle enclosed by the

tube entrance:

dido o

p
I=0

- exp (-S 2 ) {exp (S2cos2e)[1 + 2S2cos2e +

2 d_

2S2cos20 erf(ScosS) + erf(Scos8)] +-- ScosO} _ --

(_7)

where 8 is the angle between the external flow velocity

vector and the solid angle element d_.

_-External Flow Direction

The subscripts of

with the tube wall and m

denote
Pn,m

n previous collisions

previous intermolecular collisions

since the last tube wall collision.

The molecular flux qo,o on or through a point surface

(on the tube wall or through the exit plane) due to molecules

streaming directly from the external stream without molecular

collisions ifi transit is (Ref. 8 and Eq. 26):

dqoo(2oi){' : 1 + S2cos exp(-S 2) 1 +

q®

3/%-
-- Scos9

2

1 + (2/3)S2cos2e 1

1
1 + $2cos28

exp(S2cos2el)[l +

erf(ScOSGl)] ,_ cose

-20-
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where (q, = (1/2 /[)(0 v m) (Ref. 9) is the flux that would

exist across the entrance plane into the tube for a zero

stream velocity, O 1 is the angle between the external flow

velocity vector and the solid angle element dm, and 82 is

the angle between the normal to the point surface and d_.

dw

_--_External Flow Direction

Point Surface

h----Normal to Point Surface

The integration with ¢ (Eq. 26) in both Eqs. (27)

and (28) is over the beam path between the point and some

point in the external stream where collisions are assumed

negligible. Since the density pw/_ ° in _ is a function

of both the axial and radial positions, and since the inte-

gration is made along the projection of the beam path on the

tube axis, it is necessary to express the beam path in the

form of a relation between the axial and radial coordinates.

Consider the beam path represented in the following sketch:

b x' "_ r- Beam Path

Extern-_l/9'_,,_ t/ / I \ r R

Stream __ .E. _.// , {'

_ ......... L

Entrance -21- Exit



The beam is passing from the external stream to the point

on the exit plane at radial position r. The beam path is

defined by the point where it crosses the entrance plane at

the radial position r" and the angular position e". The

relation between the radial distance r' and the axial

distance x' is found to be:

--= +2 -- 1 - --

R L R

cose"

Cos¢

x' 2 r") 2 1Y

in Eq. (26) for this case is

1/2

(29)

(L/R)

COS_ :

q
n,o

[(L/E) 2 + (r/R) 2 + (r"/R)2 _ 2(r/R)(r"/R)cose',]l/2

(30)

At each point x' along the tube axis, a radial posi-

tion r' is determined from Eq. (29). From these x' and

r' coordinates, a density (Dw/p ®) is found from the known

density distribution.

The inte£ration along the beam path and over the solid

angle enclosed by the tube entrance in Eqs. (27) and (28)

is accomplished by numerical techniques.

The density p at a point and the molecular flux
n,o

on or through a point surface due to molecules streamin_
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directly to the point after n collisions with the tube wall,

and without intermolecular collisions in transit from the

last wall collisi_n, is obtained from (Ref. 8 and Eq. 26):

d_

1 (qw)n-I _ (31)dPn,o :

_, [(Tw)n_I/T ]*/2 q _

and

(qw) d_cos8
dqn,o _ n-I 4 (32)

q_ q I?

where (qw)n_l is the molecular flux at the element of tube

wall enclosed by the solid angle element dm for molecules

arriving after n-I previous wall collisions, (Tw)n_ 1 is

the temperature of these molecules after rebounding from the

tube wall element, and 0 is the angle between the point

surface and d_. It should be pointed out that the molecules

in (qw)n_l include molecules having previous intermolecular

collisions in transit from the last wall collision, as well

as the n-I previous wall collisions. The single subscript

in the (qw)n_l and (Tw)n-I nomenclature denotes this fact.

In a later section, the procedure for accounting for inter-

molecular collisions will be described.

The temperature (T w) of molecules rebounding from
o_o

an element of tube wall surface after arriving from the external

stream withcut previous wall collisions or intermolecular

collisions in transit is (Ref. 8, with the above mentioned
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change :n no_enc!a-_ure, and Eq. 25):

f

(T w) _ 2(y - I) x
o,o = (I - =)

T® [ y + i (qw)o/q.

+ -- + a___%s

y + T

(33)

where:

9 1dx : 2exp(-S 2) 1 ÷ --$2c°s28!4 +--S_c°s2 401

+ --exp(S2eos2Ol)SCosO 1 (1 +--$2cos20 +-- "WCOShO8 3 1 15

÷ erf(ScOSel) ] %--cos9
w

and where, as in Eq. (2B), 01

flow velocity and d_, and 02

normal to the point surface and

(3U)

is the angle between the external

is the angle between the

d_. Also, y is the ratio

of specific heats of the gas, and T s is the tube wall temp-

erature. Once again, the integration of Eq. (34) is over the

solid angle enclosed by the tube entrance.

The temperature (Tw)n,o of molecules rebounding

from an element of tube wall surface after n previous wall

collisions without intermolecular collisions in transit from

-24-



the i:_'"- w_]i :ol]ision _s (R-f. _ and r_ 26):

_(qw )
(Tw) n q® T

,o : (I - _)

T

" (qw)n/q®

n-i (Tw)n-i dw cose

Ts

T

(35)

where the integration is over the solid angle m enclosing

the interior of the tube wall surface with apex at the loca-

tion of (Tw)n, ° and the wall flux (qw)n_l and temperature

(Tw)n_ 1 a_e at the positions on the tube wall surface enclosed

by the solid angle element dm, 8 is the angle between dm

and the normal to the tube wall at the location of (Tw) n ,

and _ is the thermal accommodation coefficient.

Scattered Beams. - Those molecules that are attenuated

from the bea:r clre ass_ned to be scattered isotropically. The

v<,i ::%e ulement_ where attenuation occurs may then be considered

as sources cf ne_: nolecular beams. Referring to Eq. (24),

•_ a narrow bee:% of intensity I passes through an elementary

right cylindep volune element of cmoss section dA and length

d£ with the axis of the cylinder oriented in the beam direction,

the total number dQ of molecules attenuated from the beam in

The volume element per unit time is:

dQ : - dI dA : pw_O 2 I dV (36)

where dV : d£ dA is the volume of the elementary cylinder.
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These molecules will be scattered isotropically so that the

flux dq' on or through a surface at a distance d from the

volume element is:

a 2 1 dV
Pw

dq' = #cosS' (37)
4 d 2

where 8' is the angle between the normal to the surface and

the straight line between dV and the point on the surface.

Now the shape of the volume element dV actually

makes no difference and could just as well be a small sphere.

If a number of different beams are passing through the ele-

mentary sphere from different directions, we are concerned

only with the intensity of each elementary beam and not the

flux across some fixed surface contributed by the beam.

Therefore, rather than the total flux q across a point

surface, we are interested in an integrated beam intensity

I which is obtained in the same way as the flux q except

that the cos0 factor is removed from the integration, B

being the angle between the beam direction and the normal to

a point surface. Eq. (37) then becomes, when expressed in

terms of the Knudsen number Kn (Eqs. 7-8):

(LID)(ow/0 ®) I _ (dV/L 3) cose'

dq' = (38)
4/_ _Kn (d/L) 2

The intensity Io o at a point due to molecules

streaming directly from the external stream without inter-

molecular collis_ons in transit is obtained by integrating
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Eq. (8) in Ref. 8 modified by dropping the cos@ 2

and includin£ %:

factor

r
dlo,o

(I ÷ S2cos2a) exp(-S 2) ,(i

q. L

3/7
+ -- Scose

2

1 + (2/3)$2cos2@

1 + $2c0s20

exp(S2eos_O)[l +

]
erf(Scos_ )]I

(39)

where e is the angle between the external flow direction

and d_.

The intensity I at a point due to molecules
n_o

streaming directly to the point after n collisions with

the tube wall and without intermolecular collisions in transit

from the last wall collision is obtained from a modification

of Eq. (32):

dw

'it

di (qw) d_n,e n-!

q q

(40)

The intensity I at a point due to molecules
n_m

arriving at the point after n collisions with the tube wall

and after m intermolecular collisions in transit from the

last wall collision is obtained from a modification of Eq.

(38):

di
n_T_ _

q_

(L/2) (Ow/_ _) (I n,m_I/q=)¢(dv/L 3)

4,/_ _ Kn(d/L) 2

-27-
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The intensity I n at a point due to all molecules

arriving at the point after n tube wall collisions is obtained

by summing In, m over all possible number of intermolecular

collisions m. In practice, the summation is terminated at

some M beyond which the contributions to the summation are

considered negligible:

M

In = _ In, m (42)
m=o

Now referring back to Eq. (38) and the subsequent

development for the intensity I, the molecular flux qn,m

on or through a point surface due to molecules arriving at

the point after n collisions with the tube wall and after

m inter_olecular collisions in transit from the last wall

collision is:

dqn,m (LID)(Pw/o®)Cln,m_i/q.)_(dV/L3)cos%'

q® _/7 _ Kn(d/L) 2

(43)

The molecular flux qn on or through a point surface due to

all molecules arriving at the point after n collisions with

the tube wall is:

M

qn = Z -cn
m:o ,m

(44)

In order to obtain the density p at a point due to

molecules arriving at the point after being scattered from a

-28-



volume element, it is necessary to know the average velocity

of the scattered molecules. In order to obtain this average

velocity, the assumptions were made that the molecules

scattered in the volume element did not exchange energy with

the target molecules during collision, and that the distribution

of velocities of the scattered molecules after collision were

Maxwellian.

From a modification of the theory presented in Ref. 8

for the interchange of energy at the tube wall, the temperature

(T) of molecules scattered from a volume element after
0_0

arriving at the volume element from the external stream with-

out intermolecular collisions in transit is:

(
Tg 2(_ - i) X' 5 - 3y)o_o _ + (45)

T V + 1 I /q _ + 1

where ×' is obtained from a modification of Eq. (34):

dx' : 2exp(-S 2)
i 4

+ --

8

9 1

+ --$2cos28 +--Sdcos_8

2

4
exp(S2cos2e)Scos8 (1 + --$2cos28

3

4 1 d_,
+-- S_cos_e)[l + erf(S cos O)] _ _

15
(_6)

where e is the same as e I in Eq. (34).

For molecules arriving at the point after n collisions

with the tube wall and without any intermolecular collisions
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in transit from the last tube wall collision, the temperature

of the molecules is:

d_
(qw)n_l (Tw)n_ 1 @__

(Tg)n, ° _ q= T® I

T I lq
n_o

(47)

where (qw)n_l and (Tw)n_ 1 are the fluxes and temperatures

at the element of tube wall surface enclosed by dm and the

integration is over the solid angle enclosed by the interior

of the tube with apex at the location of (T)
g n,o"

For molecules arriving at the point after n collisions

with the tube wall and after m intermolecular collisions in

transit from the last tube wall collision, the temperature

is:

F (Tg) d In
I n,m-i ,m

(Tg)n, m .J T= q=

T® In ,m/q"

(48)

where dl is the contribution to I by a volume
n,m n,m

element dV as defined in Eq. (_i), (Tg)n,m_ 1 is the

temperature at dV, and the integration is over the volume

containing the scattering molecules.

The average temperature

arriving at the point after n

(T) for all molecules
g n

tube wall collisions is:

(Tg) m :

M

m=O
In,m (Tg)n,m

I
n

(49)
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Now, the density dp in a narrow beam of molecules

passing through a point surface is related to the flux dq

as follows:

dp : dq/Q cosS' (50)

where Q is the average velocity of the molecules and O'

is the angle between the beam and the normal to the point

surface. Using Eqs. (43) and (50) and the relation (Ref. 9)

q.. = (l12/[)p v ill
(Sl)

the density p

the point after n

at a point due to molecules arriving at

collisions with the tube wall and after

m intermo!ecular collisions in transit from the last wall

collision is:

(L/D)(Ow/0.)(In,m_i/q.)_(dV/L3)

16/_ _ Kn(d/L)2[(Tg)n,m_i/T=]I/2

(52)

The density p n at a point due to all molecules arriving

at the point after n tube wall collisions is:

M

Pn : Z p n_
m=o

(53)

The temperature (Tw)n, m of molecules rebounding from an

element of tube wall surface after n previous wall collisions and
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after m intermolecular collisions in transit from the last

wall collision is:

)_ (Tg)n,m-i d(qw)n m(i -_

(Tw)n, m T q. T s

T (qw) T= n,m

(5_)

where d(qw)n, m is the contribution to (qw)n,m by a volume

element dV as defined in Eq. (43), (Tg)n,m_ 1 is the temp-

erature at dV, and the integration is over the volume con-

raining the scattering molecules.

The average temperature (Tw) n for all molecules

reboundin_ from the tube wall surface after n tube wall

collisions is:

M

(T ) m=o
w n

(qw)n,m (Tw/T,)n, m

T® (qw)n

(55)

Computation Procedure

The required inputs for the computation procedure

are the tube dimensions L/R, the speed ratio S, the ratio

Ts/T = of the tube wall temperature to the free stream temp-

erature, the thermal accommodation coefficient s, and the

Knudsen number Kn.

The first step is to obtain the free molecular distri-

bution of tube wall scattered molecules 0w/_" by the method
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of Ref. 8. This distribution is then used as the first

approximation to Ow/O® for use as inputs to the computa-

tion for the finite Knudsen number case.

n=o, m=o. - Using all of the above inputs, the density

distribution 00,0/0® throughout the tube is calculated by

numerically integrating Eq. (27). The flux (qw)o,o/q along

the tube wall and the flux
(qE)o,o/q® over the tube exit

are obtained by numerically integratinK Eq. (28). The intensity

Io,o/q_ distribution throuqhout the tube is obtained from

Eq. (39). The temperature (Tg)o,o/T" distribution throuqhout

the tube is obtained by integrating Ea. (46). The temperature

(Tw)o,o/T® is obtained from Eq. (33) and (3u).

/q and (qE) /q®,n:o, m:m.- Then °o,m _' (qw)o,m _ o,m

Io, /q=, (Tg) /T , and (T w) /T are obtained from Eqs.

(52), (u3), (41), (48), and (54), respectively, for each

successive m from I to some chosen value M.

n=o. - Then po/o , (qw)o/q® and (qE) /q , I /q ,

(T) /T , and (T w) /T are obtained from Eqs. (53), (44),

(42), (_g), and (55), respectively.

n:n, m=o. - For each succeedinK value of n, p /_
n,o _

,o/ /T , and (T) /T are obtained from(qw)n q®' (T_)n, ° - w n,o ®

Eqs. (31), (32), (_0), (47), and (35), respectively.

n=n, m=m. - For each value of

on to the next value of n, 0n,m/0.,

n, nmior to Dassinq

(qw)n,m/q® and (qE) n,m/q® ,
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I m/q , (T)n /T , and (Tw) n /T are obtained fromn_ _ g _m _ _m

the same equations as in n=o, m:m above for each successive

m from 1 to M.

n:n. - For each

n, PnlP, ,

(Tw)n/T ®

above.

n, prior to passing on to the next

(qw)n/q and (qE)nlq®, In/q , (Tg)nlT ., and

are obtained from the same equations as in n:o

The above process is repeated for each successive n

such that the calculated quantities

and qE/q® are obtained from:

up to some chosen value N

became negligibly small.

Next, O/P , qw/q.,

N

pip : Z _ /p (56)
n

n:o

N

q/q : Z qnlq® (57)
n.o

The total flow rate through the tube is obtained by

numerically integrating qE/q® over the exit plane.

The distribution of tube wall scattered molecules

is obtained from

Ow/O. = p/O= - p /p (58)

This new distribution of pw/p is then taken as the second

approximation and used as inputs into another calculation.

The above described process is repeated until the succeeding
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approximations of OwlO do not change appreciably and

convergence is achieved.

CONCLUDING REMARKS

In comparing the two approaches, it is seen that

Approach 1 is somewhat simpler and requires fewer calculations

Than Approach 2. However, The rigor of Approach 1 is not

at all obvious and appears To be totally lacking in certain

areas. The criterion for determining whether colliding

molecules are retained in the volume element or passed onto

the next volume element is not clearly based on sound rea-

soning. Neither is the assumption that wall collisions are

"built into" the free molecular solution. The fact that the

calculated transmission probability approaches unity for high

Knudsen numbers and, therefore, must be considered normalized

To the free molecular Transmission probability is highly

questionable. Due to The lack of a sound theoretical basis,

effort on This approach has been suspended.

The collision model of Approach 2 is based primarily

on the following assumptions: (I) scattering of a beam of

molecules is due only to collisions between molecules in the

beam and molecules which have experienced previous wall col-

lisions, (2) the scattering molecules, those that have had

previous wall collisions, are assumed to be at rest compared

to the molecules in the beam, (3) The scattering of The

n_olecules in the beam is isotropic, and, (4) no energy is
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exchanged during the intermoleculam coll_s_ons. Assumptions

(I) and (?) are probatly mope accurate at the higher speed

ratios; however assumptions (3) and (4) are probably mope

accurate at the lower speed ratios. Considering all assumptions,

Approach 2 is probably most accurate, therefore, in an inter-

mediate range of speed Patios. Approach 2 is currently being

programmed for computer solution.

RECOmmENDATION

It is recommended that the programming of Approach

2, as applied to Zube flow, be carried to completion. It

is further recommended that this approach be applied to the

calculation of aerodynamic dra_ for various simple shapes

such as spheres and cylinders, both convex and concave.
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